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In this paper, we present a practical approach for the characterization of critical points on conical intersection
seams as either local minima or saddle points using second-derivative technology. The utility of this
methodology is illustrated by the analysis of seven S0/S1 (2Ag/1Ag) conical intersection points involved in
the photochemistry of butadiene. The characterization of critical points on the crossing seam requires second
derivatives computed in curvilinear coordinates. Using such coordinates, we can represent the branching
space and the intersection space to second order. Although these curvilinear coordinates are conceptually
important, they also give rise to two additional practical applications. First, such coordinates yield information
on the nature of vibrational modes that are stimulated following radiationless decay at a crossing point. Second,
the second-order force field is directly comparable to experimental spectroscopic data for Jahn-Teller systems.
We will illustrate the latter idea for the cyclopentadienyl radical.

1. Introduction

Nonadiabatic processes, passing through a conical intersec-
tion, involve molecular motions on more than one potential
energy surface.1-14 Such processes play a key role in the
mechanisms of photochemical and photobiological nonradiative
decay, that is, internal conversion. As we will discuss in detail
subsequently, conical intersections are not isolated points but
rather are part of an extended “seam” of molecular geometries
where the energy of two states varies while preserving their
degeneracy. Because of this, it is possible to find many “local”
critical points on the conical intersection seam, which may be
minima or saddle points. However, defining the precise meaning
of terms such as “negative” direction of curvature, which are
necessary to characterize a saddle point in the context of the
seam, is not straightforward. Accordingly, we will introduce
curvilinear coordinates (involving a nonlinear combination of
rectilinear coordinates) that describe the locus of points belong-
ing to the seam. As we will show, these coordinates are
interesting in their own right because they yield additional
information on the nature of vibrational modes that are
stimulated following radiationless decay at a crossing point.

Our objective in this paper is to show that one can characterize
the nature of conical intersections using second-derivative
technology, in addition to the usual gradient-based methods.
(We have presented initial less-general formulations of this
method previously,15,16and Yarkony17,18has described a related
approach using fitting methods, in contrast to our analytical
gradient methods). We will illustrate the utility of this idea by
examining S0/S1 (1Ag/2Ag) conical intersection points connected
with the photochemistry of butadiene. As we will show, one
can find seven optimized conical intersection geometries, of
which three are local minima and the remaining four are saddle
points on the crossing seam. We also illustrate that the same

type of second-derivative information permits a direct connec-
tionbetweentheoryandexperimentinJahn-Tellersystems.11-12,19-22

In this case, the frequencies associated with the normal modes
of the seam are the same as the experimental observed
frequencies at the Jahn-Teller point, that is, the conical
intersection geometry, except for the moat frequencies.

To characterize conical intersections using second-derivative
technology, one needs to use curvilinear coordinates. Remark-
ably, as we will show, an examination of the characteristics of
these curvilinear coordinates also provides useful information
about the nature of vibrational modes that are stimulated on
decay at a conical intersection. In butadiene, for example, we
will show that at thes-cisoidconical intersection geometry the
motion along the Z-E isomerization coordinate is stimulated by
quadratic terms.

We have written this paper so that most of the conceptual
aspects of the theoretical development are discussed in this
introduction in a nonmathematical way with the aid of
Figures 1-3. The mathematical details are then provided in a
subsequent section. The reader should be able to skip such
mathematical details and proceed directly to the results on a
first reading. Accordingly, we now provide a brief summary of
the essential concepts associated with the characterization of
the extended conical intersection seam. We acknowledge that
many of the ideas associated with the representation of conical
intersection to the second order have been discussed in various
places in literature (see for example refs 9-13 and 15-23).

Current practical applications and practical studies of conical
intersections for photochemical mechanisms use afirst-order
description, that is, based upon gradients only. This yields the
familiar schematic picture of a conical intersection shown in
Figure 1. In this picture, the degeneracy at the apex of the cone
is lifted in the two-dimensional subspace often referred to as
the branching space24 or g-h plane.9-10 The branching plane is
spanned by the gradient difference vector (Qh x1 in Figure 1) and
the nonadiabatic interstate coupling vector (Qh x2 in Figure 1).
Orthogonal to the branching plane, there exists a complementary
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subspace of dimension (3N - 8), whereN is the number of
atoms. In this subspace, called the intersection space24 or seam
space,9-10 the energies of the two crossing states remain
degenerate to first order,7,10,23,24 that is, for an infinitesimal
displacement along the rectilinear intersection-space coordinates.
The branching-space and intersection-space vectors are deter-
mined in computations using gradient technology (see for
example refs 7, 10, 13, 25, and 26 and references therein) and
thus we refer to this as thefirst-order approximation.

A conical intersection point, that is, the apex in Figure 1, is
not isolated but rather belongs to a (3N - 8) crossing hyperline,
that is, the intersection space.24 This extended crossing seam
can be visualized by plotting the intersecting potential energy
surfaces in a space consisting of one vector from the branching
plane,Qh x1(2), and one vector from the intersection space,Qh i as
shown in Figure 2. The branching space and the double-cone
picture (Figure 1) remain valid as one moves along the crossing
seam (Figure 2). However, the energy at the apex of the cone
in Figure 1 obviously changes. The accessibility of extended
portions of the conical intersection seam has proven to be an
essential mechanistic feature in the photochemistry of several
systems (see for example refs 1, 2, 4-8, and 27-29). Thus, a
detailed description of the extended nature of the conical
intersection seam is important in photochemical mechanisms
and dynamics.

In Figure 2, the optimized conical intersection geometry is
positioned at the origin. At this point, the gradient in the
intersection subspace is zero and the two crossing states are
degenerate. In contrast, within the branching plane the two states
are degenerate only at the apex of the cone (the origin of the
reference system in Figure 1) but the gradients are not zero.
Furthermore, in Figure 2 we can see that the two states are
degenerate for all values ofQh i, but as we will see, this is an
artifact of the first-order approximation.

Along the crossing seam (Figure 2), an optimized conical
intersection can be characterized as either a minimum
(Figure 2a) or a saddle point (Figure 2b) with respect to theQh i

coordinate. In the case of a saddle point, if one were to “follow
the seam” (outside of the region shown in Figure 2b) then one
would encounter other critical points on the crossing seam at
lower energy.15,16 However, currently available methods for
studying conical intersections are based on gradient technology
alone10,26,30-32 and thus one cannot currently characterize the
optimized crossing point as either a minimum (Figure 2a) or a

saddle point (Figure 2b). It should be clear that a method for
the determination of the curvature at a crossing point would
have many practical applications. However, the coordinates used
to describe the branching space (and the intersection space) need
to be generalized in order to determine the curvature of the
conical intersection seam energy. We now discuss this point
briefly.

We begin by explaining why the coordinates used in the
description of the conical intersection need to be generalized
in order to characterize the curvature of the seam energy. In
Figure 2, there is a simplification that arises from the first-order,
that is, gradient-based description of conical intersections, that
does not occur at higher order. In Figure 2, one can see that the
extended seam is parallel to the intersection coordinate,Qh i, that
is, the seam curve lies in the plane of the energy and the chosen
intersection-spacecoordinate.However,innumericalcomputations15-18

one finds that the degeneracy is, in practice, lifted for a finite
displacement along any intersection coordinate (Figure 3c and
d). Thus, beyond first order, the intersection space as described
in rectilinear coordinates is like a Renner-Teller intersection
of two degenerate states of a linear molecule (see for example
ref 33). Although this seems inconsistent at first, in fact, such
degeneracy lifting is just a manifestation of the assumption
(made within the first-order description) that the seam lies in
the energy/intersection coordinate plane. In general, the crossing
seam is curved9,10,13,15,18,24as shown in Figure 3a and b, which
is analogous to Figure 2a and b in the first-order approximation.
This provides the reason for a more general choice of coordinate
system in order to describe the curvature of the seam energy.

We now discuss Figure 3, which shows the crossing seam
including the quadratic effects. Figure 3a (minimum) and b
(saddle point) is analogous to Figure 2a and b. The linefi
corresponds to the projection of the seamU(fi) on the coordinate
space consisting of one coordinate from the branching plane,
Qh x12, and one from the intersection space,Qh i. In Figure 2,fi
would be coincident withQh i. Thus, the major difference from
Figure 2 is that the crossing seam has becomecurVed in Figure
3. By curved we mean that the seam bends toward the branching
plane coordinate, with a mixing of branching-space and
intersection-space coordinates.15-18 This curvature is required
to describe finite displacements where the degeneracy is
preserved.15,16

In Figure 3c and d we show cuts through Figure 3a and b in
the (U, Qh i) plane, corresponding to Figure 2c and d. It is clear
in this figure that the two potential energy surfaces split apart
(Figure 3c and d) along any finite displacement lying strictly
along the rectilinear first-order intersection modes,Qh i, that is,
in the plane containing energy and the intersection coordinate.

Figure 3 also shows that a curvilinear coordinate is essential
to describe the behavior of the extended seam. If we define the
curvilinear coordinates asfi, then the crossing seam energy can
be written as a function of these (3N - 8) variablesU(fi) rather
than the (3N - 6) rectilinear coordinates. It then becomes clear
that the curvature of the seam energy becomes simply the second
derivative of the seam energy with respect to such curvilinear
coordinates.15,16We will refer to the matrix of second derivatives
computed in this way as theintersection-space Hessian.

The curvilinear coordinates just discussed are the second-
order generalization of the intersection adapted coordinates
introduced by Atchity et al.24 Following their original definition,
the (3N - 8) degeneracy maintaining curvilinear coordinates
span the quadratic intersection subspace, whereas the remaining
two coordinates define the quadratic branching subspace. We
used the term quadratic intersection-space subspace to describe

Figure 1. Double-cone topology for a conical intersection of two
potential energy surfaces in the branching plane.
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the situation where the degeneracy is preserved for any
displacement along the corresponding curvilinear coordinates
correct to second-order. Because of this definition, we can
describe the curvature of the conical intersection seam in this
curvilinear coordinate space. The quadratic branching space is

defined analogously using the branching-space curvilinear
coordinates. The picture given in Figure 1 remains valid;
however, the axes in this case become curved. As we will
discuss subsequently, the curvature of this space, obtained by
mixing first-order branching space and first-order intersection

Figure 2. Schematic representation of the two crossing potential energy surfaces in a space consisting of one coordinate belonging to the branching
space and one coordinate belonging to the intersection-space: (a) minimum, (b) saddle point, (c) cross section of a along the intersection coordinate,
Qh i, and (d) cross section of b along the intersection coordinate, Qh i.

Figure 3. Locus of the conical intersection seamU( fi) and the corresponding curvilinear coordinatefi: (a) minimum, (b) saddle point, (c) cross
section of a along first-order intersection-space coordinate Qh i, and (d) cross section of b along first-order intersection-space coordinate, Qh i.
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space,15-18 is important for discussing the dynamics at conical
intersections.

In a subsequent illustrative application to the photochemistry
of butadiene, we will locate several conical intersection points,
for which the gradient is zero within the (3N - 8) intersection
space. Then using the intersection-space Hessian, we will
characterize such critical points on the (3N - 8) crossing
hyperline as minima (Figure 3a) or saddle points (Figure 3b).
Moreover, we will show how one can carry out a normal-mode
analysis at a saddle point on the seam. The normal mode
associated with an imaginary frequency will be associated with
a particular intersection-space curvilinear coordinate and can
be used to predict the occurrence of new conical intersection
geometries at lower energy.

We will also show how the second-derivative analysis
developed for conical intersections can be used for the study
of symmetry-induced crossing occurring in Jahn-Teller active
molecules.11,19-22,35 The important point is that the seam
frequencies evaluated with our second-derivative methodology
can be compared directly with spectroscopic frequencies and
the seam normal modes can be used in place of the normal
modes of the distorted molecule. In addition, the linear and
quadratic potential energy constants evaluated at an optimized
conical intersection point can be applied directly as parameters
in the force field used to simulate recorded spectra19-22,36,37or
to perform dynamics studies.11,12,35,38We will discuss such an
application in the analysis of the cyclopentadienyl radical conical
intersection, where we will show that calculated and experi-
mental frequencies agree to within a few percent.

2. Theory

We begin this section by introducing a set of rectilinear
coordinates that are suitable for the description of conical
intersections. Using the notation introduced previously,15 such
coordinates can be defined as

The first parentheses contain the two coordinates necessary to
describe the first-order branching space and the second cor-
respond to the (3N - 8) coordinates spanning the first-order
intersection space. The two coordinates spanning the branching
space are the gradient difference (eq 2a) and the interstate
coupling (eq 2b) vectors.

In eq 2, statesA andB are the two electronic states associated
with the conical intersection.êiγ is the γth mass-weighted
Cartesian coordinate of theith atom. The indexi labels theN
atoms andγ the Cartesians components,x, y andz. Although
the degeneracy is linearly lifted in the branching plane, it is
retained in the orthogonal (3N - 8) subspace spanned by the
remaining coordinates. The coordinates used in eqs 1 and 2 were
originally suggested by Davidson39 and later utilized by Atchity
et al.,24 who referred to them asintersection-adapted coordi-
nates. Although Atchity et al. defined this coordinate system
in a very general way, these coordinates were only used in the

first-order approximation, that is, first-order intersection adapted
coordinates.

We now move to discuss the two-state quadratic expansion
of the potential energy using the coordinates defined in eqs 1
and 2. The type of expansion we will use has been applied
extensively in the study of Jahn-Teller systems.11,12,19-22,38

However, in the present work we will use the coordinates
defined in eqs 1 and 2, whereas in Jahn-Teller studies, the
normal coordinates of a reference system at a minimum
configuration are normally utilized.

Assuming thatA andB are two coupled electronic states, the
two-state potential energy matrix can be constructed as a Taylor
expansion about the crossing point. Diagonalization of the two-
by-two potential energy matrices yields the adiabatic energies
for any displacements of theQh i defined in eq 1. This expansion
can be expressed in rectilinear first-order intersection adapted
coordinates and truncated at the second order as shown in
eq 3:

In eq 3, the zero-order term,W(0), is a diagonal matrix where
each element corresponds to the energy of the two degenerate
states,EA andEB, evaluated at the reference crossing point,Qh 0:

1 represents the identity matrix. It should also be noticed that
EA andEB are equal because the expansion is performed around
a crossing point. This value can then be taken as reference point
andW(0) set to zero. In eq 4, we have chosen to do the expansion
relative to (EA + EB)/2 and (EB - EA)/2 because, as we will
show subsequently, the conditions for the seam are most
conveniently expressed as combinations of derivatives of the
sum and the difference of the state energies.

The first-order potential energy matrix has the form

The linear potential constants used in eq 5 are defined as

The subscript 0 indicates that these quantities are evaluated at
the conical intersection point. It should be noticed that all of
the gradient components are limited to the branching plane,Qh x1

and Qh x2, because the expansion was performed around an
optimized conical intersection point.

Qh )(Qh x1
,Qh x2

) x (Qh 3,Qh 4,...,Qh 3N - 6) (1)

x1
(iγ) )
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2
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2
Qh x2)1 + (- δκ
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κ
ABQh x2

κ
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(6a)

κ
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0
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We now discuss the quadratic term in the expansion of the
potential energy matrix (eq 3). For simplicity, the quadratic term
will be divided in three parts:Wa

(2) the contribution arising
within the branching plane (eq 7a),Wb

(2) the contributions
within the intersection space (eq 7b), andWc

(2) the contribu-
tions from the coupling of modes belonging to both subspaces
(eq 7c).

The quadratic potential energy constants in eq 7 are defined as

All of these quantities are computed using the state-averaged
Hessian for each individual state, which can be analytically
determined for CASSCF wavefunctions.40,41

Now our objective is to analytically define the curvilinear
coordinates (Figure 3) that give the locus of the seam of
intersection. We can then formulate the equation for the Hessian
in the intersection space correct to second order. As we will
show, this matrix can be used for the characterization of
optimized conical intersection structures.

The diagonalization of the potential energy matrix to second
order defined in eq 3 provides the analytical expansion of each
of the two intersecting potential energy surfaces:

In the following development we neglect the termsWa
(2) (eq

7a) andWc
(2) (eq 7c), retaining only the terms involving the

intersection space alone,Wb
(2) (eq 7b), because we are inter-

ested in the curvature of the seam energy. We refer to this
simplification as theparabolic approximation, shown in
Figure 3a and b. We have carried through the analysis without
neglectingWa

(2) (eq 7a) andWc
(2) (eq 7c) and it does not seem

possible to parametrize the seam (as discussed below) for this
general situation. However, the curvatures computed at the point
of intersection will be the same. Although the inclusion of the
neglected terms would allow the seam to be described over a
more extended region, it would complicate the mathematical
derivation and would not yield additional insight.

Setting the quantity in the square root to zero (eq 9) and
neglectingWa

(2) (eq 7a) andWc
(2) (eq 7c) yields the following

conditions to be satisfied by our curvilinear coordinates:

The conditions given by eq 10 define the parametrizedparabolic
intersection coordinates, fi. Such parabolic coordinates can be
chosen as

In other words, for any displacement alongfi (eq 11), eq 10
remains satisfied and the degeneracy is retained correct to second
order. The particular form of eq 11, among many possible, was
chosen so that the scale factors,42 which are essential in the
differentiation with respect to curvilinear coordinates, were
unity.

We can write the expression for the seam energy as function
of the curvilinear coordinatesfi, (eq 11), as

Wa
(2) ) ( ∑
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Because the expansion was performed at an optimized point,
the gradient of the seam energy within the intersection space is
necessarily zero and the curvature of the seam energy is given
simply by its second derivative, which can be written as

In eq 13, the indicesk andl run over the (3N - 8) intersection-
space curvilinear coordinates. Inserting the constants defined
in eq 11, we obtain theintersection-space Hessian:

The diagonalization of the intersection-space Hessian provides
the curvature of the energy seam and a set of eigenvectors, which
are the tangent vectors to the curvilinear intersection-space
coordinates,fi. Throughout the development, both gradient
difference,δκ, and interstate coupling,κAB, are assumed to have
nonzero length. However at a singlet-triplet crossing, where
theκAB andηAB terms are zero, the definition of the intersection-
space Hessian is simply obtained by leaving out the terms
including these constants from eq 14.

We conclude this section with a discussion of the branching-
space curvilinear coordinates that are complementary to the
intersection-space coordinates used in the previous discussion
of the crossing seam. The two parabolic branching-space
coordinates are defined as (eqs 2.13.a and 2.13.b of ref 24)

When the two potential energy surfaces (eq 9) are expressed as
functions of the two branching-space coordinates (eq 15), one
retains the simple double-cone picture shown in Figure 1
corrected to second-order:

Thus, the degeneracy is lifted alongf1 and f2 (eq 16), that is,
the branching-space coordinates, and retains along the remaining
f3, f4, ..., f3N - 6 (eq 11), that is, intersection-space coordinates.

It can be seen in eqs 15a and b that the first-order branching-
space coordinates, that is, gradient difference,Qh x1 (eq 2a), and
nonadiabatic interstate coupling vector,Qh x2 (eq 2b), mix with
the intersection-space coordinates quadratically via the mixing
coefficientsδγij andηij

AB, giving rise to curvilinear coordinates.
Thus, one can examine the contributions of various first-order
intersection-space motions by diagonalization of theδγij and
ηij

AB matrices. The largest eigenvalues will correspond to the
strongest mixing modes.

Using these coordinates, one retains the simple double-cone
picture shown in Figure 1 corrected to second order (eq 16).
Thus, it is expected that the modes that make the dominant
contribution to the coordinatesf1 and f2 (eq 15) will become
populated after photochemical decay, in addition to the popula-
tion of the first-order branching-space modes. A trajectory
passing through a surface hop will have momentum in those

coordinates populated during evolution on the excited states.
At the surface hop, additional momentum will be generated in
branching-space modes and those modes that have large second-
order couplings (eq 15), as determined by the eigenvalues of
the δγij andηij matrices.

3. Computational Details

All of the conical intersections were computed using the
complete actiVe space self-consistent field(CASSCF) method
implemented in a development version of Gaussian.43 The active
space of fourπ electrons and fourπ orbitals and a 6-31G* basis
set was used to optimize the butadiene conical intersections.
For the cyclopentadienyl radical, fiveπ electrons and fiveπ
orbitals were used with Dunning’s cc-pVDZ basis set.

All of the conical intersection structures were located using
the algorithm of Bearpark et al.32 and using state-averaged
wavefunctions for the equally weighted ground and first excited
states (other conical intersection optimization methods have now
been developed in addition to ref 32 and the original algorithm
of Yarkony,44 see for example refs 24, 30, and 31).

All of the quantities needed to characterize critical points on
the extended conical intersection seam (defined above in section
2) can now be computed analytically. The linear potential energy
constants (eq 6) are evaluated during a standard conical
intersection optimization:δκ and κAB, respectively, are the
length of the gradient difference and interstate coupling vectors,
λi is the sum of the gradient projections onto the gradient
difference (i ) x1) and the interstate coupling direction
(i ) x2). In all of our calculations, the nonadiabatic interstate
coupling vector was orthogonalized to the gradient difference
vector.

In the second-order potential matrices (eq 7), there are three
types of potential energy constants to be evaluated, two diagonal
(δγij eq 8c,ωij eq 8a) and one off-diagonal (ηij

AB eq 8b). The
diagonal terms are computed using a specific combination of
the projected state-averaged (SA) Hessians of the two electronic
states. The SA Hessians for the two states are analytically
computed as discussed in refs 40 and 41. The intersection-space
SA Hessians are obtained using an extension of a method
proposed to calculate frequencies orthogonal to a reaction path
as shown in ref 15. Thesecond-order interstate coupling terms,
ηij

AB, have been computed using a combination of the two
wavefunctionsφA andφB optimized at the conical intersection
geometry:

The elements of the Hessian for these two rotated states,γij
(,

can be expressed in terms of the original ones:

The elementsωij andηij
AB are defined in eq 8. From eq 18,

the ηij
AB can be computed easily. Thus, the second-order

potential energy constants defined in eq 8 are computed using
the various combinations of the SA Hessians of the two
intersecting states projected onto the intersection space. We have
implemented our approach within the CASSCF approximation;
however, the same formalism can, in principle, be implemented
in other higher level theoretical approaches provided the
necessary Hessians can be computed.

∂
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Finally, a comment on accuracy seems relevant at this stage.
We have implemented our analysis at the CASSCF level. This
requires state-averaged Hessians and it seems unlikely that one
could implement such Hessian computations at a higher level
of theory such as CASPT2. Nevertheless, it is well known that
gradients and frequencies of nonionic states are often well
reproduced at levels of theory that do not include dynamic
correlation. Thus, we expect that our results for the Jahn-Teller
Hamiltonian, where direct comparison with experiment is
possible, should have an agreement within 10% like SCF
frequencies. In fact, as we will see, our agreement for the Jahn-
Teller frequencies in the cyclopentadienyl radical is not quite
so accurate. However, the remaining error is predicted as a
consequence of neglecting the coupling terms between the
branching-space and intersection-space vectors.

4. Results and Discussion

It is our intention in this section to illustrate the utility of the
methodology presented in sections 1 and 2. We shall use the
photochemistry of butadiene to show how one can characterize
the topology of the S0/S1 intersection seam and how qualitative
dynamics information can be obtained from the analysis of the
nature of branching-space curvilinear coordinates (eqs 15a and
b). We shall also show how the potential constants obtained in
the analysis of the seam can be used in the study of the
Jahn-Teller active cyclopentadienyl radical system. Here, the
seam frequencies evaluated with our methodology can be
compared directly with spectroscopic data.

Example 1: The S0/S1(1Ag) Conical Intersection Hyperline
of Butadiene. Over the years, butadiene photochemistry has
stimulated many theoretical studies.1,2,4,5,7,14,29,44-47 Experiments
performed on butadiene in dilute solution had shown that
irradiation with a 254-nm light source leads to as-cis/s-trans
isomerization (Scheme 1a), double-bond isomerizations
(Scheme 1b and c), and cyclobutene (Scheme 1d), bicyclo
[1.1.0] butane, and methylenecyclopropyl 1,3-diradical
formation44 (Scheme 1e). Over a decade ago, a1Ag photochemi-
cal pathway involving a passage through a conical intersection
was proposed.46 In that early CASSCF study, three conical
intersection geometries were located on the intersection seam
between the ground (S0) and first excited state (S1): a s-cisoid,
a s-transoid, and acentral conical intersection geometry. The
s-cisoidstructure was assumed to be the starting point for the
generation of the photochemical products forcis-trans isomer-
ization (Scheme 1a),Z-E isomerization (Scheme 1b),Z,Z-E,E

isomerization (Scheme 1c), and cyclobutene (Scheme 1d) and
bicyclo1,1,0butane formation (Scheme 1e). Indeed, in subsequent
work5,48 ground-state reaction paths leading to many of these
products were located. Within the intersection space, thecentral
conical intersection was assumed to be a saddle point between
the s-cisoidands-transoidconical intersection structures.

We have now exhaustively searched for all possible low-
energy critical points on the S0/S1 (1Ag/2Ag) crossing seam of
butadiene. We have found three minima,CIcis, CI trans, and
CIring, and four saddle points,SPCIcis/cis, SPCItrans/trans, SPCIcis/trans,
and SPCIcis/ring. The corresponding geometries and energetics
are collected in Tables 1 and S1 (Table S1 is available in the
Supporting Information, where the Cartesian coordinates of all
of the optimized structures are also provided in Table S7). In
Table 1, there are twoCIcis conical intersections that are
chemically equivalent and connected by the saddle point
SPCIcis/cis. A similar connectivity exists between theCI trans,
SPCI trans/trans, andCItrans. The global relationships between these
conical intersection geometries are illustrated in Figure 4. The
potential contants and first-order branching plane vectors
(eq 2 and Figure 1) are reported in Tables S2 and 2, respectively.
The normal modes [tangent to the intersection-space curvilinear
coordinates,fi (eq 11)] associated with the imaginary frequencies
at the conical intersection saddle points (SPCI ) are displayed in
Table 3. For example, the vector shown for theSPCI tran/trans

structure is the tangent vector to the curvilinear coordinate that
connects the two chemically equivalentCI trans. Here, the “kink”
angles, that is, 120° angle (C1-C2-C3) and the 99° angle
(C2-C3-C4), in CI trans are interchanged to give the corre-
sponding chemically equivalent structure,CI trans’.

It is apparent from inspection of the results presented in
Table 1 and Figure 4 that the topology of the conical intersection
seam is richer than that in the initial study,46 where onlys-cisoid,
s-transoid, andcentral conical intersections could be located.
In the region where thecentral conical intersection point was
located in ref 46, we findSPCIcis/cis, SPCItrans/trans, andSPCIcis/trans.

SCHEME 1: Photochemistry of Butadiene TABLE 1: Important Geometric Parameters for the
Optimized Butadiene CI Geometriesa

a The bond lengths are expressed in angstroms, and the angles are
presented in degrees.b Full Cartesian coordinates for all of the
geometries are given in the Supporting Information (Table S7).
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We also find a new conical intersection not documented in
ref 46, CI ring, as well asSPCIcis/ring, which connectsCI ring to
CIcis.

We now briefly comment on the region of the intersection
space originally characterized as thecentralconical intersection
and now characterized by three individual saddle points on the

crossing seam. The topology of this intersection-space region
can be explained with the help of the imaginary seam frequen-
cies and normal modes displayed in Table 3 forSPCIcis/cis,
SPCI trans/trans, and SPCIcis/trans. The SPCIcis/cis structure, ofC2

symmetry, connects two equivalentCIcis structures, which differ
mainly according to which of the two C-C-C angles has the
characteristic kink. In a similar way, structureSPCI trans/trans, also
of C2 symmetry, connects two equivalentCI trans structures. The
connection between thes-cisoidands-transoidregions of the
seam is given bySPCIcis/trans. This structure also hasC2

symmetry and has one imaginary frequency of 1163 cm-1 with
a torsion component that connects thes-cisoidands-transoid
structures. The imaginary frequency displayed in Table 3 and
the branching-space vectors shown in Table 2 forSPCIcis/trans

are all totally symmetric. Thus,SPCIcis/trans appears to connect
the other two saddle points,SPCIcis/cis andSPCI trans/trans, which
have the same symmetry. Presumably the points are connected
through the equivalent of valley-ridge inflection points in the
intersection space. This probably explains the fact that the
imaginary frequencies ofSPCIcis/cis and SPCI trans/trans are not
totally symmetric.

The cyclopropene-like minimum,CI ring, located for the first
time in this study, deserves a brief comment. TheCI ring is
connected toCIcis, discussed previously, through structure
SPCIcis/ring (Table 1). In previous studies,45,48,49no direct ground-
state reaction path was located that would lead to the methyl-
enecyclopropyl 1,3-diradical intermediate (Scheme 1e). In light
of this observation, one might now suggest that a ground-state
reaction path fromCIring would lead to the 1-methyl-cyclopro-
pene intermediate (Scheme 1e), which is the precursor of the
bicyclo1,1,0butane photoproduct; but this remains to be verified.

The normal modes shown in Table 3 are tangent to the
intersection-space curvilinear coordinates,fi (eq 11), and they
give a qualitative picture of the motions required to reach a
lower energy structure after moving along the conical intersec-
tion seam. A more complicated nonlinear combination of normal
modes, that is, curvilinear coordinates, would be necessary to
trace out a path within the conical intersection seam. Thus, one
could not carry out an intrinsic reaction coordinate (IRC)
calculation using the displaced modes as starting displacement.
Rather, one would either need constraints to remain on the
crossing seam or need to use curvilinear coordinates directly.

We now discuss how qualitative dynamics information can
be obtained from the analysis of the nature of branching-space

Figure 4. Schematic representation of the topology of the S0/S1 conical
intersection seam of butadiene. The critical point geometries are given
in Table 1 (SP ) saddle point).

TABLE 2: Gradient Difference (Equation 2a) and Interstate
Coupling Vectors (Equation 2b) for the Optimized Butadiene
Conical Intersection Geometries

TABLE 3: Seam Normal Modes of the Conical Intersection
Saddle Points
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curvilinear coordinates,f1 (eq 15a) andf2 (eq 15b). As discussed
in the introduction, these coordinates can be used to suggest
the normal modes that may be populated at the surface hop.
Using the branching-space curvilinear coordinates,f1 andf2, the
picture given in Figure 1 remains valid; however, the axes
become curved (mixtures of the first-order terms gradient
difference and derivative coupling with intersection-space
coordinates as described in eqs 15a and b). In general, a
trajectory passing through a surface hop will have momentum
in those coordinates that are populated during evolution on the
excited-state reaction path. At the surface hop, additional
momentum will be generated in first-order branching-space
modes and in those modes that have a large second-order
coupling (eq 15), as determined by the eigenvalues of theδγij

andηij matrices. We now discuss this effect forCIcis butadiene.
At CIcis, the gradient difference and interstate coupling vectors

(Table 2) suggest that motions involved in thes-cis/s-trans
isomerization (Scheme 1a) and cyclobutene closure (Scheme
1d) reaction pathways will be enhanced at the surface hop. With
the extension of the definition of the branching space to second
order, the modes corresponding to the largest eigenvalues (in
absolute value) of the matrixISδγij and ISηij

AB couple to the
branching plane vectors and one might expect such modes to
be populated on decay at the conical intersection.

At the CIcis geometry, there are four (Table 4) large
eigenvalues ofISδγij (the analysis ofISηij

AB yields similar
conclusions). The mode providing the largest contribution to
the f1 (eq 15a) is shown in Table 4a and corresponds to a
methylenic group twisting. Accordingly, after the surface hop
the population of this mode is expected to be enhanced and
might be expected to contribute to the stimulation of theZ-E
isomerization pathway (Scheme 1b). The modes reported in
Table 4c and d show a similar twisting motion but are primarily
localized on the opposite end of butadiene. Thus, momentum
will be generated in theZ,Z-E,E isomerization coordinate
(Scheme 1c). At the same surface hop, one of the coordinates
defining the parabolic branching space also has a large
component along the mode shown in Table 4b. This motion is
parallel to the cyclobutadene formation pathway (Scheme 1d).

In summary, the quadratic definition of branching space
around theCIcis enables one to identify the relevant motions
whose population will be enhanced at a surface hop. These
modes lie parallel to possible pathways that lead to the formation
of four out of the five butadiene photoproducts. However, we
emphasize that dynamics studies are necessary to understand
whether or not the momentum in the S1 part of the reaction
path predominates over the additional population generated by
coupling at the surface hop and also to understand the extent to
which the enhancement of the population of these modes at the
surface hop is important in the dynamics.

Example 2: The Dynamic Jahn-Teller Effect in the
Cyclopentadienyl Radical. In the previous example, the
topological structure of the extended conical intersection seam
has been characterized by the seam normal modes associated
with imaginary frequencies that enable one to interrelate various
conical intersection structures. In this last application, we shall
study a system showing a dynamic Jahn-Teller effect.35-36

We discuss this case because a direct connection between the
theory of conical intersections presented in this work and
spectroscopic experiments is possible.

In the dynamic Jahn-Teller effect, the depth of the moat on
the ground-state potential energy surface is so small that the
molecule is not localized at the geometry of the global minimum,
as in the case of the static Jahn-Teller effect. Thus the
Jahn-Teller-Hamiltonian must be evaluated at the central
conical intersection geometry in order to rationalize spectro-
scopic behavior. In this case, the quadratic potential energy
matrix proposed in this study (eq 3) can be used to compute
both frequencies and normal modes (with the exception of the
two “moat” modes) at the Jahn-Teller conical intersection point,
as well as all the potential energy constants necessary to fully
simulate the recorded emission spectra corrected at the second-
order.

The partition of the internal coordinate space proposed in
eqs 1 and 2 is anatural basisfor Jahn-Teller systems: all of
the first-order (linear) Jahn-Teller contributions will be confined
to the two motions defining the branching plane, which are the
only two modes with nonzero first-order contributions (eq 5).
In contrast, the analysis of Jahn-Teller systems is usually
carried out in special normal coordinates associated with a
fictitious minimum at the apex of the cone in Figure 1. However,
there are important advantages to the coordinate system defined
in eqs 1 and 2. In this case, the two branching-space coordinates
can be thought of as linear combinations of all of the so-called
linear Jahn-Teller actiVe modes, for which the first derivative
of the energy evaluated at the conical intersection point is
nonzero.37 Thus, once all the linear contributions to the
Hamiltonian are projected out from the Hessian, the (3N - 8)
frequencies obtained from the seam analysis are the same as
the experimental frequencies.

The preceding analysis makes two assumptions. First, the two
vibrational frequencies in the moat of the Jahn-Teller system
are excluded from this analysis, but they must be combination
of the branching plane vectors (eq 2). However, we have
neglected theWa

(2) (eq 7a) andWc
(2) (eq 7c), which couple the

first-order branching-space modes and the first-order intersec-
tion-space modes so this will have some effect on the (3N - 8)
intersection-space frequencies. Second, we have assumed that
we are in the regime of the dynamic Jahn-Teller effect, that
is, the molecule is not localized at the minimum of the moat
(distorted geometry) and therefore it shows molecular properties
of a system lying at the conical intersection geometry
(undistorted geometry). As we shall show in our analysis of
the Jahn-Teller cyclopentadienyl radical, the experimental
frequencies are well reproduced.

The cyclopentadienyl radical atD5h geometry has2E′′1
electronic symmetry and therefore is subject to Jahn-Teller
distortion.16,19,20,49,50The conical intersection geometry has been
optimized at CASSCF level with a cc-pVDZ basis set, and the
geometrical features are summarized in Table S3. Bond lengths
and bond angles are in good agreement with the data collected
experimentally by means of high-resolution rotational analysis19-20

and with previously computed values.20,49 Using symmetry
arguments,16,35 it can be shown that onlye′2 modes are able to

TABLE 4: Dominant Modes Contributing to f1 (Equation
15), One of the Two Curvilinear Branching-Space
Coordinates
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lift linearly the degeneracy between the two states and therefore
are linear Jahn-Teller active. The computed gradient difference
and interstate coupling vectors indeed transform ase′2 within a
D5h point group (Table S4).

The results of the seam frequency analysis are summarized
in Table 5. In the third column of this table, we show the
frequencies obtained with eq 14 and the frequencies recorded
experimentally.19-20 The two frequencies at 1041 cm-1

(third column of Table 5) are assigned to the branching-space
vectors. The remaining (3N - 8) frequencies are assigned to
the intersection-space modes. The agreement between theory
and experiment has an error ranging from 0.5% to 10%, with
an average of 2.6% and a standard deviation of 3.1. Certainly
the agreement is good enough to confirm the assignment of the
spectrum.

In Tables S5 and S6 we give the full set of potential constants
for the energy matrix defined in eqs 6 and 8, including the
previously neglected terms,Wa

(2) (eq 7a) andWc
(2) (eq 7c).

These potential energy constants could be used in the simulation
of experimental spectra. Such potential constants could be
obtained routinely for other Jahn-Teller systems, thus providing
a more direct comparison between theory and experiment.

5. Conclusions

In this paper, we have presented a theoretical formalism for
the quadratic representation of conical intersections. We have
shown that the potential constants in such a quadratic repre-
sentation can be obtained from a state-average Hessian calcula-
tion within the CASSCF approach. The analysis of the conical
intersection correct to second order involves the definition of
curvilinear coordinates (Figure 3), which define the locus of
the extended conical intersection seam. Given these curvilinear
coordinates, it becomes possible to analyze the curvature of the
conical intersection seam energy (minima and saddle points).
The more general definition of the branching space in a
complementary set of curvilinear coordinates permits one to
make some predictions about the dynamics at a conical
intersection. Finally, for the special conical intersection associ-
ated with the dynamic Jahn-Teller effect, the potential constants
permit a direct comparison between theory and experiment.

Application to the extended conical intersection seam associ-
ated with the 1Ag/2Ag states in butadiene photochemistry shows

that this seam is richer than previously documented. In
particular, the central conical intersection region has now been
shown to be comprised of four different saddle conical intersec-
tion points,SPCI trans/trans, SPCIcis/cis, SPCIcis/trans, andSPCIcis/ring.
In addition, a new conical intersection,CI ring, has been located
along the direction of negative curvature associated with one
of the central intersection points, that is,SPCIcis/ring. The analysis
of the branching-space curvilinear coordinates atCIcis suggests
that coordinates associated withZ,Z-E,Eisomerization may be
stimulated on decay at the surface hop.

Finally, analysis of the Jahn-Teller system cyclopentadienyl
radical shows good agreement between computed and experi-
mental frequencies.
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