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In this paper, we present a practical approach for the characterization of critical points on conical intersection
seams as either local minima or saddle points using second-derivative technology. The utility of this
methodology is illustrated by the analysis of sevefSS(2A4/1Ag) conical intersection points involved in

the photochemistry of butadiene. The characterization of critical points on the crossing seam requires second
derivatives computed in curvilinear coordinates. Using such coordinates, we can represent the branching
space and the intersection space to second order. Although these curvilinear coordinates are conceptually
important, they also give rise to two additional practical applications. First, such coordinates yield information
on the nature of vibrational modes that are stimulated following radiationless decay at a crossing point. Second,
the second-order force field is directly comparable to experimental spectroscopic data foif didinsystems.

We will illustrate the latter idea for the cyclopentadienyl radical.

1. Introduction type of second-derivative information permits a direct connec-
tionbetweentheoryand experimentin Jafiieller systemg!-1219-22

n this case, the frequencies associated with the normal modes
of the seam are the same as the experimental observed
frequencies at the JahiTeller point, that is, the conical
intersection geometry, except for the moat frequencies.

To characterize conical intersections using second-derivative
technology, one needs to use curvilinear coordinates. Remark-
ably, as we will show, an examination of the characteristics of
these curvilinear coordinates also provides useful information
about the nature of vibrational modes that are stimulated on
decay at a conical intersection. In butadiene, for example, we
will show that at thes-cisoidconical intersection geometry the
motion along the Z-E isomerization coordinate is stimulated by
guadratic terms.

We have written this paper so that most of the conceptual
aspects of the theoretical development are discussed in this
introduction in a nonmathematical way with the aid of
Figures 3. The mathematical details are then provided in a
subsequent section. The reader should be able to skip such
mathematical details and proceed directly to the results on a
first reading. Accordingly, we now provide a brief summary of
the essential concepts associated with the characterization of
the extended conical intersection seam. We acknowledge that
many of the ideas associated with the representation of conical
intersection to the second order have been discussed in various
places in literature (see for example refs18 and 15-23).

Current practical applications and practical studies of conical
intersections for photochemical mechanisms uses&order

Nonadiabatic processes, passing through a conical intersec
tion, involve molecular motions on more than one potential
energy surfacé 14 Such processes play a key role in the
mechanisms of photochemical and photobiological nonradiative
decay, that is, internal conversion. As we will discuss in detail
subsequently, conical intersections are not isolated points but
rather are part of an extended “seam” of molecular geometries
where the energy of two states varies while preserving their
degeneracy. Because of this, it is possible to find many “local’
critical points on the conical intersection seam, which may be
minima or saddle points. However, defining the precise meaning
of terms such as “negative” direction of curvature, which are
necessary to characterize a saddle point in the context of the
seam, is not straightforward. Accordingly, we will introduce
curvilinear coordinates (involving a nonlinear combination of
rectilinear coordinates) that describe the locus of points belong-
ing to the seam. As we will show, these coordinates are
interesting in their own right because they yield additional
information on the nature of vibrational modes that are
stimulated following radiationless decay at a crossing point.

Our objective in this paper is to show that one can characterize
the nature of conical intersections using second-derivative
technology, in addition to the usual gradient-based methods.
(We have presented initial less-general formulations of this
method previously®>6and Yarkony’18has described a related
approach using fitting methods, in contrast to our analytical
gradient methods). We will illustrate the utility of this idea by

examining 9/S; (LAg/2A) conical intersection points connected . . : o
with the photochemistry of butadiene. As we will show, one deS.CF'F’“O” that IS, bgsed upon gradpnt;s only. T.h's yields the
ffammar schematic picture of a conical intersection shown in

can find seven optimized conical intersection geometries, o Fi 1. In this pict the d tth fh
which three are local minima and the remaining four are saddle . igure 1. 1n this picture, the degeneracy at (n€ apex ot the coneé

oints on the crossing seam. We also illustrate that the same'> lifted in Fhe two-dimensional subspace often_referred t_o as
P g the branching spaéeor g-h plan€’~1° The branching plane is
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saddle point (Figure 2b). It should be clear that a method for
the determination of the curvature at a crossing point would
have many practical applications. However, the coordinates used
to describe the branching space (and the intersection space) need
to be generalized in order to determine the curvature of the
conical intersection seam energy. We now discuss this point
briefly.

We begin by explaining why the coordinates used in the
description of the conical intersection need to be generalized
in order to characterize the curvature of the seam energy. In
Figure 2, there is a simplification that arises from the first-order,
that is, gradient-based description of conical intersections, that
does not occur at higher order. In Figure 2, one can see that the
extended seam is parallel to the intersection coordiGatehat
is, the seam curve lies in the plane of the energy and the chosen
intersection-space coordinate. However, innumerical computtighs
one finds that the degeneracy is, in practice, lifted for a finite
displacement along any intersection coordinate (Figure 3c and
Figure 1. Double-cone topology for a conical intersection of two ). Thus, beyond first order, the intersection space as described
potential energy surfaces in the branching plane. in rectilinear coordinates is like a RennéFeller intersection
of two degenerate states of a linear molecule (see for example
ref 33). Although this seems inconsistent at first, in fact, such
degeneracy lifting is just a manifestation of the assumption
(made within the first-order description) that the seam lies in

subspace of dimension NB3— 8), whereN is the number of
atoms. In this subspace, called the intersection gpaceseam
space) 10 the energies of the two crossing states remain
i 0,23,24 i infini i . . . .
degenerate to first ordé, that is, for an infinitesimal (e energy/intersection coordinate plane. In general, the crossing

displacement along the rectilinear intersection-space coordlnatesseam is curvetilo13.15.18245 shown in Figure 3a and b, which

The branching-space and intersection-space vectors are detefs anai0gous to Figure 2a and b in the first-order approximation.

mined in computations using gradient technology (see for rhig hrovides the reason for a more general choice of coordinate
example refs 7, 10, 13, 25, and 26 and references therein) andyystem in order to describe the curvature of the seam energy.

thus we refer to this as thrst-order approximation We now discuss Figure 3, which shows the crossing seam
A conical intersection point, that is, the apex in Figure 1, is including the uadrat%: effeéts Figure 3a (minimum) %nd b

not isolated but rather belongs to &(3- 8) crossing hyperline, (saddleg oint)qis analodous to. Fi gure 2a and b. The fine
that is, the intersection spaéeThis extended crossing seam corres oFr)lds 0 the ro'eg(]:tion of thegseum) on the c;)ordina‘te
can be visualized by plotting the intersecting potential energy P . proj . .

: L 27 space consisting of one coordinate from the branching plane,
surfaces in a space consisting of one vector from the branching’= . . — -

® % Qx» and one from the intersection spac€g, In Figure 2,f;

pIane,lel(z),.and one vector from the intersection spaQeas would be coincident withQ;. Thus, the major difference from

shown in Figure 2. The branching space and the double-coneFi ure 2 is that the crossing seam has becomreedin Fiqure

picture (Figure 1) remain valid as one moves along the crossing 9 9 9 .

. 3. By curved we mean that the seam bends toward the branching

seam (Figure 2). However, the energy at the apex of the cone . : o :

oo . . plane coordinate, with a mixing of branching-space and

in Figure 1 obviously changes. The accessibility of extended ! : . 18 =1 ; -
intersection-space coordinatés?® This curvature is required

portions of the conical intersection seam has proven to be an . - . .
. I ) ) to describe finite displacements where the degeneracy is
essential mechanistic feature in the photochemistry of Severalpreserve 45,16

systems (see for example refs 1, 2,8 and 2729). Thus, a . ) )
detailed description of the extended nature of the conical N Figure 3c and d we show cuts through Figure 3a and b in
intersection seam is important in photochemical mechanismsthe U, Qi) plane, corresponding to Figure 2c and d. It is clear
and dynamics. in _th|s figure that the two pote_nt_|al energy surfaces_ split gpart
In Figure 2, the optimized conical intersection geometry is (Figure 3c and d) along any finite displacement lying strictly
positioned at the origin. At this point, the gradient in the glong the recnlmegr_ first-order intersection mons,that is,
intersection subspace is zero and the two crossing states ard? the plane containing energy and the intersection coordinate.
degenerate. In contrast, within the branching plane the two states Figure 3 also shows that a curvilinear coordinate is essential
are degenerate only at the apex of the cone (the origin of theto describe the behavior of the extended seam. If we define the
reference system in Figure 1) but the gradients are not zero.curvilinear coordinates &g then the crossing seam energy can
Furthermore, in Figure 2 we can see that the two states arebe written as a function of theseN3- 8) variablesU(f;) rather
degenerate for all values @i, but as we will see, this is an  than the (Bl — 6) rectilinear coordinates. It then becomes clear
artifact of the first-order approximation. that the curvature of the seam energy becomes simply the second
Along the crossing seam (Figure 2), an optimized conical derivative of the seam energy with respect to such curvilinear
intersection can be characterized as either a minimum coordinates>16We will refer to the matrix of second derivatives
(Figure 2a) or a saddle point (Figure 2b) with respect to@he  computed in this way as thatersection-space Hessian
coordinate. In the case of a saddle point, if one were to “follow  The curvilinear coordinates just discussed are the second-
the seam” (outside of the region shown in Figure 2b) then one order generalization of the intersection adapted coordinates
would encounter other critical points on the crossing seam at introduced by Atchity et &4 Following their original definition,
lower energy->16 However, currently available methods for the (3N — 8) degeneracy maintaining curvilinear coordinates
studying conical intersections are based on gradient technologyspan the quadratic intersection subspace, whereas the remaining
along®26:36-32 gnd thus one cannot currently characterize the two coordinates define the quadratic branching subspace. We
optimized crossing point as either a minimum (Figure 2a) or a used the term quadratic intersection-space subspace to describe
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(a)

(b)
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Figure 2. Schematic representation of the two crossing potential energy surfaces in a space consisting of one coordinate belonging to the branching
space and one coordinate belonging to the intersection-space: (a) minimum, (b) saddle point, (c) cross section of a along the intersect@n coordinat
Qi, and (d) cross section of b along the intersection coordinate, Q

U -

Figure 3. Locus of the conical intersection seauf f;) and the corresponding curvilinear coordinéte(a) minimum, (b) saddle point, (c) cross
section of a along first-order intersection-space coordinateu@l (d) cross section of b along first-order intersection-space coordinate, Q

the situation where the degeneracy is preserved for anydefined analogously using the branching-space curvilinear
displacement along the corresponding curvilinear coordinatescoordinates. The picture given in Figure 1 remains valid;
correct to second-order. Because of this definition, we can however, the axes in this case become curved. As we will
describe the curvature of the conical intersection seam in this discuss subsequently, the curvature of this space, obtained by
curvilinear coordinate space. The quadratic branching space ismixing first-order branching space and first-order intersection
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spaces~18 is important for discussing the dynamics at conical first-order approximation, that is, first-order intersection adapted
intersections. coordinates.

In a subsequent illustrative application to the photochemistry ~We now move to discuss the two-state quadratic expansion
of butadiene, we will locate several conical intersection points, of the potential energy using the coordinates defined in egs 1
for which the gradient is zero within the3— 8) intersection and 2. The type of expansion we will use has been applied
space. Then using the intersection-space Hessian, we willextensively in the study of JahiTeller systemg?12.19-22,38
characterize such critical points on theN(3- 8) crossing However, in the present work we will use the coordinates
hyperline as minima (Figure 3a) or saddle points (Figure 3b). defined in egs 1 and 2, whereas in Jafireller studies, the
Moreover, we will show how one can carry out a normal-mode normal coordinates of a reference system at a minimum
analysis at a saddle point on the seam. The normal modeconfiguration are normally utilized.
associated with an imaginary frequency will be associated with ~ Assuming thaA andB are two coupled electronic states, the
a particular intersection-space curvilinear coordinate and cantwo-state potential energy matrix can be constructed as a Taylor
be used to predict the occurrence of new conical intersection expansion about the crossing point. Diagonalization of the two-
geometries at lower energy. by-two potential energy matrices yields the adiabatic energies

We will also show how the second-derivative analysis for any displacements of th@ defined in eq 1. This expansion
developed for conical intersections can be used for the studycan be expressed in rectilinear first-order intersection adapted
of symmetry-induced crossing occurring in Jatireller active coordinates and truncated at the second order as shown in
moleculest!19-2235 The important point is that the seam eq 3:
frequencies evaluated with our second-derivative methodology
can be compared directly with spectroscopic frequencies and W(Q) = wO - W(l)((_)) + EW(Z)(Q) ©)
the seam normal modes can be used in place of the normal 2
modes of the distorted molecule. In addition, the linear and
quadratic potential energy constants evaluated at an optimizedn €q 3, the zero-order termy(©), is a diagonal matrix where
conical intersection point can be applied directly as parameters€ach element corresponds to the energy of the two degenerate

in the force field used to simulate recorded spe€t@&36.37or statesEa andEg, evaluated at the reference crossing pait,
to perform dynamics studié$.12:3538wWe will discuss such an
application in the analysis of the cyclopentadienyl radical conical _ Eg —Ea 0
intersection, where we will show that calculated and experi- ©o_ EaTEs 2

- L WY =—F7+—1+ _ 4
mental frequencies agree to within a few percent. 2 0 Eg —EA

2

2. Theory

1 represents the identity matrix. It should also be noticed that

Ea andEg are equal because the expansion is performed around

a crossing point. This value can then be taken as reference point

andW© set to zero. In eq 4, we have chosen to do the expansion

relative to Ea + Eg)/2 and Eg — Ea)/2 because, as we will

_ = I _ show subsequently, the conditions for the seam are most
Q=(Q,,Q) ® (Q2.Qs---Qan-6) 1) conveniently expressed as combinations of derivatives of the

sum and the difference of the state energies.

The first parentheses contain the two coordinates necessary to The first-order potential energy matrix has the form

describe the first-order branching space and the second cor-

respond to the (8 — 8) coordinates spanning the first-order 3 1

intersection space. The two coordinates spanning the branching w® = (_1 Q, + 2 Q )1 +

space are the gradient difference (eq 2a) and the interstate 270 2%

coupling (eq 2b) vectors.

We begin this section by introducing a set of rectilinear
coordinates that are suitable for the description of conical
intersections. Using the notation introduced previod3ktich
coordinates can be defined as

LG e
2 4 2 5
ABA Ok = ®)

K sz ? Qxl

_ d(Eg— E,) The linear potential constants used in eq 5 are defined as
xin=28_"N (2a)
1 85
Iy 8(EB - EA)
AW, |H WO o= aQ (62)
= —A B (2b) x 0
8£iy N
L AILE -
In eq 2, state$\ andB are the two electronic states associated N a(_gx2 o
with the conical intersections;, is the yth mass-weighted
Cartesian coordinate of thiéh atom. The index labels theN AE, + Ep)
atoms andy the Cartesians componenis,y andz. Although = A = X, Xo (6¢)
the degeneracy is linearly lifted in the branching plane, it is 3Qxi 0

retained in the orthogonal KB— 8) subspace spanned by the

remaining coordinates. The coordinates used in egs 1 and 2 werél'he subscript 0 indicates that these quantities are evaluated at
originally suggested by Davids#tand later utilized by Atchity the conical intersection point. It should be noticed that all of
et al.2 who referred to them afmitersection-adapted coordi-  the gradient components are limited to the branching pl@ne,
nates Although Atchity et al. defined this coordinate system and Qy, because the expansion was performed around an
in a very general way, these coordinates were only used in theoptimized conical intersection point.
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We now discuss the quadratic term in the expansion of the
potential energy matrix (eq 3). For simplicity, the quadratic term
will be divided in three parts:W® the contribution arising
within the branching plane (eq Yan) the contributions

within the intersection space (eq 7b), ang? the contribu-
tions from the coupling of modes belonging to both subspaces

(eq 7c).

wo=|y —QQ
(u;s 2 .

5 Mag 30
I~ fps
Bs 2 ) BSyy (7a)
BS, ABR ~ i _
Ui QiQ, Z ! \Q
i,jeEBS if<Bs 2
@ i
Wp' = Z —QQ)1+
i, €IS
IS
5Vij _ IS, ABA ~
- TQin i%’s M QG
M S5y (7b)
BS, ABA ~ i~ _
Z Uri in Z 0 |
HeErs ifes 2 :
BSIS
@ Y.
Wc = Z Qi Qj 1+
icBSTEIS
BSlSéVij _ BSIS, ABQ). Q)
ieBZEIS 2 Qin ieBZ,JQS P
’ 5 BSISy,, (7¢)
BYIS, ABA A i~
_ My QQ ! QQ
i
IEBS KIS iedSpis 2

The quadratic potential energy constants in eq 7 are defined as

FIW AW
AB _ A B
(Eg — En)
Vi 10,00 lo (8c)

Sicilia et al.

The diagonalization of the potential energy matrix to second
order defined in eq 3 provides the analytical expansion of each
of the two intersecting potential energy surfaces:

1 _ 3N—-6 wij o
U, .=— 10+ — Q0 +
AB 2 iEZS i< i; 2 i QJ
1 - N6y, 2 . 3N-6 77?8 G
- (5/<QX1 + —QQ T4« Q,+ —QQ
2 L 2 L2

9)

In the following development we neglect the terméf) (eq
7a) andW(Cz) (eq 7c), retaining only the terms involving the
intersection space alon®&/?) (eq 7b), because we are inter-
ested in the curvature of the seam energy. We refer to this
simplification as theparabolic approximation shown in
Figure 3a and b. We have carried through the analysis without
neglectingwgz) (eq 7a) andlv(cz) (eq 7c) and it does not seem
possible to parametrize the seam (as discussed below) for this
general situation. However, the curvatures computed at the point
of intersection will be the same. Although the inclusion of the
neglected terms would allow the seam to be described over a
more extended region, it would complicate the mathematical
derivation and would not yield additional insight.

Setting the quantity in the square root to zero (eq 9) and
neglectingW? (eq 7a) andV¥ (eq 7c) yields the following
conditions to be satisfied by our curvilinear coordinates:

F _ Iséyij _
6KQX1+A TQ'QIZO
M€ s AB (10)
_ i
Q.+ Y —QQ=0
‘ i,JeTS 2

The conditions given by eq 10 define the parametrizadbolic
intersection coordinated;. Such parabolic coordinates can be
chosen as

_ N6 ISéVij
Q= ”Z: oy i f 0=~ (11a)
3N-6 1S AB
_ 77|]
sz = wi i, Wy = — (11b)
i= 2cpg
Qi =Bif; Bi=1 (11c)

In other words, for any displacement alofigeq 11), eq 10
remains satisfied and the degeneracy is retained correct to second
order. The particular form of eq 11, among many possible, was
chosen so that the scale factétsyhich are essential in the

All of these quantities are computed using the state-averagedgitferentiation with respect to curvilinear coordinates, were

Hessian for each individual state, which can be analytically
determined for CASSCF wavefunctioffst
Now our objective is to analytically define the curvilinear

coordinates (Figure 3) that give the locus of the seam of
intersection. We can then formulate the equation for the Hessian
in the intersection space correct to second order. As we will
show, this matrix can be used for the characterization of
optimized conical intersection structures.

unity.
We can write the expression for the seam energy as function
of the curvilinear coordinate, (eq 11), as

|swij
e BBt f;
(12)

Ay,
— (o

Ay

Seam™
ijel1s
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Because the expansion was performed at an optimized point,coordinates populated during evolution on the excited states.

the gradient of the seam energy within the intersection space isAt the surface hop, additional momentum will be generated in

necessarily zero and the curvature of the seam energy is giverbranching-space modes and those modes that have large second-

simply by its second derivative, which can be written as order couplings (eq 15), as determined by the eigenvalues of
the oy; andn; matrices.

2 IS
d USeam_/.L 1 Dy 3 . .
of, o, = A0t xﬂk|+_2 Bb (13) 3. Computational Details
o _ _ All of the conical intersections were computed using the
In eq 13, the indicek andl run over the (8l — 8) intersection-  complete actie space self-consistent figf@ASSCF) method
space curvilinear coordinates. Inserting the constants definedimplemented in a development version of Gausé¥arhe active
in eq 11, we obtain thentersection-space Hessian space of fourr electrons and four orbitals and a 6-31G* basis
) 1 set was used to optimize the butadiene conical intersections.
d Ugeam: 1lis ™ S5 "% 15 AB (14) For the cyclopentadienyl radical, five electrons and fiver

orbitals were used with Dunning’s cc-pVDZ basis set.

All of the conical intersection structures were located using
The diagonalization of the intersection-space Hessian providesthe algorithm of Bearpark et &.and using state-averaged
the curvature of the energy seam and a set of eigenvectors, whichvavefunctions for the equally weighted ground and first excited
are the tangent vectors to the curvilinear intersection-spacestates (other conical intersection optimization methods have now
coordinates,fi. Throughout the development, both gradient been developed in addition to ref 32 and the original algorithm
difference o, and interstate coupling”8, are assumed to have ~ of Yarkony; see for example refs 24, 30, and 31).
nonzero length. However at a singtétiplet crossing, where All of the quantities needed to characterize critical points on
the«”B andn”B terms are zero, the definition of the intersection- the extended conical intersection seam (defined above in section
space Hessian is simply obtained by leaving out the terms 2) can now be computed analytically. The linear potential energy
including these constants from eq 14. constants (eq 6) are evaluated during a standard conical

We conclude this section with a discussion of the branching- intersection optimization:d« and «*8, respectively, are the
space curvilinear coordinates that are complementary to thelength of the gradient difference and interstate coupling vectors,
intersection-space coordinates used in the previous discussiorti is the sum of the gradient projections onto the gradient
of the crossing seam. The two parabolic branching-spacedifference { = x;) and the interstate coupling direction
coordinates are defined as (egs 2.13.a and 2.13.b of ref 24) (i = Xo). In all of our calculations, the nonadiabatic interstate

coupling vector was orthogonalized to the gradient difference
3N-6 'Sayij vector.
f,= 6/<QX1 + —QQ (15a) In the second-order potential matrices (eq 7), there are three
i=s 2 types of potential energy constants to be evaluated, two diagonal
(i eq 8c,wjj eq 8a) and one off-diagona;i;fj'(B eq 8b). The

of o, 2\ “i ok Vi e T

IS, _AB . . £ . .
SNT6 diagonal terms are computed using a specific combination of

f, = K" wt ) —QQ (15b) the projected state-averaged (SA) Hessians of the two electronic
= 2 states. The SA Hessians for the two states are analytically
computed as discussed in refs 40 and 41. The intersection-space
A Hessians are obtained using an extension of a method
proposed to calculate frequencies orthogonal to a reaction path
as shown in ref 15. Theecond-order interstate coupling terms
n;°, have been computed using a combination of the two

_ 2 5 wavefunctionspa and¢g optimized at the conical intersection
Upe= H(fxli fxz) + Vf x T f X, (16) geometry:

When the two potential energy surfaces (eq 9) are expressed a
functions of the two branching-space coordinates (eq 15), one
retains the simple double-cone picture shown in Figure 1
corrected to second-order:

Thus, the degeneracy is lifted alofigandf, (eq 16), that is, 1
the branching-space coordinates, and retains along the remaining ¢y = 7(¢A + ¢p) (7)
fs, fa, ..., fan—6 (€q 11), that is, intersection-space coordinates. 2
It can be seen in egs 15a and b that the first-order branching- )
space coordinates, that is, gradient differei@g (eq 2a), and The elements of the Hessian for these two rotated stajj‘ies,

nonadiabatic interstate coupling vect@s, (eq 2b), mix with can be expressed in terms of the original ones:

the intersection-space coordinates quadratically via the mixing

coefficientsdy; andz;®, giving rise to curvilinear coordinates. yi= 1[0)” + 29 (18)
Thus, one can examine the contributions of various first-order 2

intersection-space motions by diagonalization of dyg and
ng\B matrices. The largest eigenvalues will correspond to the The elementsy; and n?B are defined in eq 8. From eq 18,
strongest mixing modes. the r]i’?B can be computed easily. Thus, the second-order
Using these coordinates, one retains the simple double-conepotential energy constants defined in eq 8 are computed using
picture shown in Figure 1 corrected to second order (eq 16). the various combinations of the SA Hessians of the two
Thus, it is expected that the modes that make the dominantintersecting states projected onto the intersection space. We have
contribution to the coordinates andf, (eq 15) will become implemented our approach within the CASSCF approximation;
populated after photochemical decay, in addition to the popula- however, the same formalism can, in principle, be implemented
tion of the first-order branching-space modes. A trajectory in other higher level theoretical approaches provided the
passing through a surface hop will have momentum in those necessary Hessians can be computed.
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SCHEME 1: Photochemistry of Butadiene TABLE 1: Important Geometric Parameters for the
Optimized Butadiene ClI Geometrie$
_— a Geometry” 12 2-3 34 1-2-3 234 1234 7-2-38
®
Cl,, f;?: A 146 140 147 9039 121.56 5261 419
5

|
B RN

Cliing oY 1.46 1.75 142 5479 11270 114.84 6.53
JORD
c o
ClLas oo o‘:, 147 1.43 1.46 120.09 9947 11845 168.22
6}
¢ &
;
—— d SPCLangitrans o‘of 8 1.46 1.47 1.46 107.52 107.52 94.82  162.02
<]\ <l> Ly g{i 148 144 148 10922 10922 8657 4144
e — S € %
. . o)
Finally, a comment on accuracy seems relevant at this stage. wci,,.. ooo"x 147 150 147 12366 12366 107.94 7161
. . . @ G
We have implemented our analysis at the CASSCF level. This ¥

requires state-averaged Hessians and it seems unlikely that one
could implement such Hessian computations at a higher level Iy
of theory such as CASPT2. Nevertheless, it is well known that
gradients and frequencies of nonionic states are often well
reproduced at levels of theory that do not include dynamic
correlation. Thus, we expect that our results for the Jareiler
Hamiltonian, where direct comparison with experiment is
possible, should have an agreement within 10% like SCF
frequencies. In fact, as we will see, our agreement for the-Jdahn
Teller frequencies in the cyclopentadienyl radical is not quite
so accurate. However, the remaining error is predicted as a
consequence of neglecting the coupling terms between the
branching-space and intersection-space vectors.

ol)
)
ﬁo“%} o 141 153 136 7644 11924 8563 2425

2The bond lengths are expressed in angstroms, and the angles are
presented in degreesFull Cartesian coordinates for all of the
geometries are given in the Supporting Information (Table S7).

isomerization (Scheme 1c), and cyclobutene (Scheme 1d) and
bicyclo'%butane formation (Scheme 1e). Indeed, in subsequent
work®48 ground-state reaction paths leading to many of these
products were located. Within the intersection spacecémral
conical intersection was assumed to be a saddle point between
the s-cisoidand s-transoidconical intersection structures.

We have now exhaustively searched for all possible low-
energy critical points on theots; (1A¢/2Ay) crossing seam of

It is our intention in this section to illustrate the utility of the ~butadiene. We have found three minin@lcis, Clians, and
methodology presented in sections 1 and 2. We shall use theCliing, and four saddle point§Clisicis S"Clyransirans, S"Clcistrans,
photochemistry of butadiene to show how one can characterizeand S"Clcisring. The corresponding geometries and energetics
the topology of the &S, intersection seam and how qualitative are collected in Tables 1 and S1 (Table S1 is available in the
dynamics information can be obtained from the analysis of the Supporting Information, where the Cartesian coordinates of all
nature of branching-space curvilinear coordinates (eqs 15a andof the optimized structures are also provided in Table S7). In
b). We shall also show how the potential constants obtained in Table 1, there are twcCl¢s conical intersections that are
the analysis of the seam can be used in the study of thechemically equivalent and connected by the saddle point
Jahn-Teller active cyclopentadienyl radical system. Here, the S"Claisicis A similar connectivity exists between th@lans,
seam frequencies evaluated with our methodology can be S Cluansirans, andClyans. The global relationships between these
compared directly with spectroscopic data. conical intersection geometries are illustrated in Figure 4. The

Example 1: The $/S;(*A,) Conical Intersection Hyperline potential contants and first-order branching plane vectors
of Butadiene. Over the years, butadiene photochemistry has (€d 2 and Figure 1) are reported in Tables S2 and 2, respectively.
stimulated many theoretical studie&457.14.29.4447 Experiments The normal modes [tangent to the intersection-space curvilinear
performed on butadiene in dilute solution had shown that coordinatesf; (eq 11)] associated with the imaginary frequencies
irradiation with a 254-nm light source leads tesais/s-trans At the conical intersection saddle poiritSd]) are displayed in
isomerization (Scheme 1a), double-bond isomerizations Table 3. For example, the vector shown for €l yanrans
(Scheme 1b and c), and cyclobutene (Scheme 1d), bicyclostructure is the tangent vector to the curvilinear coordlnate that
[1.1.0] butane, and methylenecyclopropyl 1,3-diradical connects the two chemically equivale®itians. Here, the “kink”
formatior# (Scheme 1e). Over a decade ag&gphotochemi-  angles, that is, 120angle (C+C2-C3) and the 99 angle
cal pathway involving a passage through a conical intersection (C2-C3—C4), in Clyans are interchanged to give the corre-
was proposed® In that early CASSCF study, three conical SPonding chemically equivalent structu@yans'.
intersection geometries were located on the intersection seam It is apparent from inspection of the results presented in
between the ground ¢Band first excited state (3 as-cisoid Table 1 and Figure 4 that the topology of the conical intersection
a s-transoid and acentral conical intersection geometry. The seam is richer than that in the initial stutfuhere onlys-cisoid
s-cisoidstructure was assumed to be the starting point for the s-transoid andcentral conical intersections could be located.
generation of the photochemical products ¢@—transisomer- In the region where theentral conical intersection point was
ization (Scheme 1a}-E isomerization (Scheme 1h¥,Z-E,E located in ref 46, we find"Cl ¢ig/cis STClyansitrans, @NASPCl cisjrans:

4. Results and Discussion
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Figure 4. Schematic representation of the topology of te&Sconical

intersection seam of butadiene. The critical point geometries are given

in Table 1 P = saddle point).

TABLE 2: Gradient Difference (Equation 2a) and Interstate
Coupling Vectors (Equation 2b) for the Optimized Butadiene
Conical Intersection Geometries

Geometry Gradient Difference Vector Interstate Coupling Vector

CIcis

CI

ring

Cllivans

PClvanseans

SPCIcisIcis

SPCIcis/trans

SP,
ClLigring

We also find a new conical intersection not documented in

ref 46, Clying, as well as’*Cl gisjring, Which connectCling to
Clcis-
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TABLE 3: Seam Normal Modes of the Conical Intersection
Saddle Points

G try Seam Freq (cm™)

Seam transition mode

PO s 44541

SPCH s 729.17 i
SPCL teans 1163.01 i
S C gring 35322

crossing seam. The topology of this intersection-space region
can be explained with the help of the imaginary seam frequen-
cies and normal modes displayed in Table 3 $8Cl iscis
SPClyransitrans, @nd SFCl gigirans: The SFCl gis/cis Structure, ofC,
symmetry, connects two equivale®ls structures, which differ
mainly according to which of the two-©C—C angles has the
characteristic kink. In a similar way, structU¥®l yansytrans, also

of C, symmetry, connects two equivaléDlyans Structures. The
connection between thecisoidands-transoidregions of the
seam is given bySFCl strans. This structure also ha€,
symmetry and has one imaginary frequency of 1163%with

a torsion component that connects #ieisoidand s-transoid
structures. The imaginary frequency displayed in Table 3 and
the branching-space vectors shown in Table 25! cisjtrans

are all totally symmetric. Thu$PCl sirans appears to connect
the other two saddle point8TCl s/cis aNd SPCl yransitrans, Which
have the same symmetry. Presumably the points are connected
through the equivalent of valley-ridge inflection points in the
intersection space. This probably explains the fact that the
imaginary frequencies 0$"Cls/cis and SFClyansjtrans are not
totally symmetric.

The cyclopropene-like minimun€l ing, located for the first
time in this study, deserves a brief comment. Tk, is
connected toClgs, discussed previously, through structure
SPCl ¢isiring (Table 1). In previous studié8;*84°no direct ground-
state reaction path was located that would lead to the methyl-
enecyclopropyl 1,3-diradical intermediate (Scheme 1e). In light
of this observation, one might now suggest that a ground-state
reaction path fronCl g would lead to the 1-methyl-cyclopro-
pene intermediate (Scheme 1e), which is the precursor of the
bicyclo1-°butane photoproduct; but this remains to be verified.

The normal modes shown in Table 3 are tangent to the
intersection-space curvilinear coordinatkgeq 11), and they
give a qualitative picture of the motions required to reach a
lower energy structure after moving along the conical intersec-
tion seam. A more complicated nonlinear combination of normal
modes, that is, curvilinear coordinates, would be necessary to
trace out a path within the conical intersection seam. Thus, one
could not carry out an intrinsic reaction coordinate (IRC)
calculation using the displaced modes as starting displacement.
Rather, one would either need constraints to remain on the

We now briefly comment on the region of the intersection crossing seam or need to use curvilinear coordinates directly.

space originally characterized as ttentralconical intersection

We now discuss how qualitative dynamics information can

and now characterized by three individual saddle points on the be obtained from the analysis of the nature of branching-space
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TABLE 4: Dominant Modes Contributing to f; (Equation Example 2: The Dynamic Jahn-Teller Effect in the

15), One of the Two Curvilinear Branching-Space Cyclopentadienyl Radical. In the previous example, the
Coordinates topological structure of the extended conical intersection seam
has been characterized by the seam normal modes associated
with imaginary frequencies that enable one to interrelate various
conical intersection structures. In this last application, we shall
study a system showing a dynamic Jaffieller effect35-36

We discuss this case because a direct connection between the
theory of conical intersections presented in this work and
spectroscopic experiments is possible.

In the dynamic JahnTeller effect, the depth of the moat on
the ground-state potential energy surface is so small that the
molecule is not localized at the geometry of the global minimum,
as in the case of the static Jahfeller effect. Thus the

curvilinear coordinates; (eq 15a) ands (eq 15b). As discussed Jahn-Teller-Hamiltonian must be evaluated at the central
) . - 1(&q . q : conical intersection geometry in order to rationalize spectro-
in the introduction, these coordinates can be used to suggest

the normal modes that may be populated at the surface hop scopic behavior. In this case, the quadratic potential energy
Using the branching-space curvilinear coordinatgandf,, the matrix proposed in this study (eq 3) can be used to compute

. 8 P ) o~ both frequencies and normal modes (with the exception of the
picture given in Figure 1 remains valid; however, the axes p ; o . .

. . ; two “moat” modes) at the JahiTeller conical intersection point,
become curved (mixtures of the first-order terms gradient

difference and derivative coupling with intersection-space as well as all the potential energy constants necessary to fully

coordinates as described in egs 15a and b). In general, aS|mulate the recorded emission spectra corrected at the second-

trajectory passing through a surface hop will have momentum order. . . ) .
in those coordinates that are populated during evolution on the ~1N€ partition of the internal coordinate space proposed in
excited-state reaction path. At the surface hop, additional €4S 1 and 2 is aatural basisfor Jahn-Teller systems: all of
momentum will be generated in first-order branching-space the first-order (!lnear) Jz_ahﬂTeIIer contnbL_Jtlons will be c_onflned
modes and in those modes that have a large second-ordef© the two motions defining the branching plane, which are the
coupling (eq 15), as determined by the eigenvalues obthe only two modes with nonzero first-order contributions (eq 5).
andy; matrices. We now discuss this effect oty butadiene. 1N contrast, the analysis of Jahiieller systems is usually

At Cl g, the gradient difference and interstate coupling vectors €aTied out in special normal coordinates associated with a
(Table 2) suggest that motions involved in theis/s-trans fictitious minimum at the apex of the cone in Figure 1. However,

isomerization (Scheme 1a) and cyclobutene closure (Scheméhere are important advantages to the coorginate system dgfined
1d) reaction pathways will be enhanced at the surface hop. With " €ds 1 and 2. In this case, the two branching-space coordinates
the extension of the definition of the branching space to second &N be thought of as linear combinations of all of the so-called

order, the modes corresponding to the largest eigenvalues (inlinear Jahn-Teller active modesfor wh_ich the first dt_erivativ_e _
absolute value) of the matri€dy; and' i/ij couple to the of the energy evaluated at the conical intersection point is

7 . e
branching plane vectors and one might expect such modes tononzero? Thus, once all the linear contributions to the

be populated on decay at the conical intersection. llc-lamllton_lan ak;? pro;ctjac;ted OtL# from the H(Iess_lan, tH?he’ 8)
At the Clgs geometry, there are four (Table 4) large requencies obtained from the seam analysis are the same as

eigenvalues of'Soy; (the analysis of'Sy;® yields similar the experlmerltal freque_nues. _ ,
conclusions). The mode providing the largest contribution to "€ preceding analysis makes two assumptions. First, the two
the f, (eq 15a) is shown in Table 4a and corresponds to a vibrational frequenue_s in the moat of the Jatireller system
methylenic group twisting. Accordingly, after the surface hop &re excluded f_rom this analysis, but they must be combination
the population of this mode is expected to be enhanced and®f the branching plane vectors (eq 2). However, we have
might be expected to contribute to the stimulation of ThE neglected thav$ (eq 7a) andV? (eq 7c), which couple the
isomerization pathway (Scheme 1b). The modes reported in first-order branching-space modes and the first-order intersec-
Table 4c and d show a similar twisting motion but are primarily tion-space modes so this will have some effect on the{(33)
localized on the opposite end of butadiene. Thus, momentum intersection-space frequencies. Second, we have assumed that
will be generated in thez,Z-E,E isomerization coordinate ~ We are in the regime of the dynamic Jahreller effect, that
(Scheme 1c). At the same surface hop, one of the coordinateds, the molecule is not localized at the minimum of the moat
defining the parabolic branching space also has a large (distorted geometjyand therefore it shows molecular properties
component along the mode shown in Table 4b. This motion is of a system lying at the conical intersection geometry
parallel to the cyclobutadene formation pathway (Scheme 1d). (undistorted geometjy As we shall show in our analysis of

In summary, the quadratic definition of branching space the Jahnr-Teller cyclopentadienyl radical, the experimental
around theCl s enables one to identify the relevant motions frequencies are well reproduced.
whose population will be enhanced at a surface hop. These The cyclopentadienyl radical abDs, geometry has’E;
modes lie parallel to possible pathways that lead to the formation electronic symmetry and therefore is subject to Jaheller
of four out of the five butadiene photoproducts. However, we distortion16:19.2049.50The conical intersection geometry has been
emphasize that dynamics studies are necessary to understandptimized at CASSCF level with a cc-pVDZ basis set, and the
whether or not the momentum in the Bart of the reaction geometrical features are summarized in Table S3. Bond lengths
path predominates over the additional population generated byand bond angles are in good agreement with the data collected
coupling at the surface hop and also to understand the extent toexperimentally by means of high-resolution rotational andfy2s
which the enhancement of the population of these modes at theand with previously computed valugs? Using symmetry
surface hop is important in the dynamics. arguments®3%it can be shown that onlg, modes are able to
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TABLE 5: Seam Frequencies (cm?) Evaluated at the that this seam is richer than previously documented. In
Conical Intersection of Cyclopentadienyl Radical Compared particular, the central conical intersection region has now been
to the Experimental Values shown to be comprised of four different saddle conical intersec-
frequency (le) tion pOintS,SPCItrans/trans, SPCI cis/cis SPCI cis/trans andsFCl cis/ring-
mode symmetry/ calculated experimental In addition, a new conical intersectio@ ing, has been located
1—2 e b 1041 along the dirt_ection of_ nega?ive curvature associated With one
34 e 557 576 of the central intersection points, thaﬁ&:llcis,ring. The analysis
5 ay 688 684 of the branching-space curvilinear coordinate€kis suggests
6—7 €/ 738 766 that coordinates associated wilZ-E,Eisomerization may be
8-9 & 853 861 stimulated on decay at the surface hop.
1o-11 & 922 872 Finally, analysis of the JahfTeller system cyclopentadienyl
12-13 € 1064 1001 , ' .
14 a, 1172 1071 radical shows good agreement between computed and experi-
15-16 €, 1234 1320 mental frequencies.
17 a, 1387 1244
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computed at each optimized butadiene-like conical intersection

lift linearly the degeneracy between the two states and thereforegeometry, respectively. In Table S3, the relevant geometrical
are linear JahnTeller active. The computed gradient difference features of cyclopentadienyl radical conical intersection are
and interstate coupling vectors indeed transforrg,agithin a reported. Table S4 contains the gradient difference vector and
Dsp, point group (Table S4). nonadiabatic interstate coupling vector computed at the cyclo-
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